Reinforcement Learning through Evolutionary Computation
نویسندگان
چکیده
This article characterizes the evolutionary algorithm approach to reinforcement learning in relation to the more standard, temporal diierence methods. We describe several research issues in reinforcement learning and discuss similarities and diierences in how they are addressed by the two methods. A short survey of evolutionary reinforcement learning systems and their successful applications is also presented.
منابع مشابه
Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملEvolutionary Computation for Reinforcement Learning
Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces, and cope with partial observability, evolutionary reinforcement-learning approaches have a strong ...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملA Proposal for Population-Based Reinforcement Learning
We propose novel ways of solving Reinforcement Learning tasks (that is, stochastic optimal control tasks) by hybridising Evolutionary Algorithms with methods based on value functions. We call our approach Population-Based Reinforcement Learning. The key idea, from Evolutionary Computation, is that parallel interacting search processes (in this case Reinforcement Learning or Dynamic Programming ...
متن کاملCooperative Behavior Acquisition by Learning and Evolution of Vision-Motor Mapping for Mobile Robots
This paper proposes a number of learning and evolutionary methods contributed to realize cooperative behaviors among vision-based mobile robots in a dynamically changing environment. There are three difficult problems: partial observation, credit assignment, and synchronized learning. In order to solve these problems, we propose the fundamental model called Local Prediction Model, which can est...
متن کامل